卡扣设计计算实例
已知条件(见上图):
Known conditions (see above) :
a. Material = PC,许用应变 4%
A. Material = PC
b. Length (L) = 19mm
B. Length (L) = 19mm
c. Width (b) = 9.5mm
C. Width (b) = 9.5 mm
d. Undercut (y) = 2.4mm
(y) = 2.4 mm
e. Angle of inclination (a) = 30°
E. Angle of inclination (a) = 30 °
求解:
Solution:
a. 在充分变形y下,厚度h允许的应变为材料许用应变的1/2
A. under the full deformation y, the strain of h allowed to be applied to the material with a strain of 1/2
b. 变形力P
B. the deforming force P
c. 装配力W
C. assembly force W
解答:
Answer:
a. 确定厚度h
A. determining thickness h
材料许用应变为:ε pm=4%,
The material can be applied to: epsilon PM = 4%,
该处允许的应变为ε=1/2 ε pm=2%
The allowable strain is epsilon = 1/2 epsilon PM = 2%
变形公式参照上篇文章的表一,type 2,shapeA:
The deformation formula is based on table 1 of the previous article, type 2, shapeA:
Y=1.09 (ε l2)/h àh=1.09 ε l2 /y = 1.09 x 0.02 x 192 / 2.4 = 3,28 mm
Y = 1.09 (epsilon l2)/h ah = 1.09 epsilon l2 / Y = 1.09 x 0.02 x 192/2.4 = 3 28 mm
b. 确定变形力P
B.determine the force P
同样参照上篇文章的表一,crosssection A,
And also in the form of the previous one, crosssection A,
P= (bh2/2) (Es ε / L ) 从材料属性图,在ε=2%时,Es = 1815 Mpa
P = (bh2/2) (Es epsilon/L) from the material properties diagram, at epsilon = 2%, Es = 1815 Mpa
P=(9.5 x 3.282 /6) (1815 x0.02 /19) = 32.5 N
P = (9.5 x 3.282/6) (1815 x0.02/19) = 32.5 N
c. 确定装配力
C. determine the assembly force
W= P (u + tanα)/ (1- tanα)
W = P (u + tan alpha)/(1 - tan alpha)
摩擦系数:上篇表2,u=0.5 x 1.2 = 0.6
Friction factor: in table 2, u = 0.5 x 1.2 = 0.6
从上篇图十五,u=0.6,α= 30°,
From the last figure 15, u = 0.6, alpha = 30 °,
W = 32.5 x 1.8 =58.5 N
W = 32.5 x 1.8 = 58.5 N